音源探査

音響インテンシティ, FFT アナライザ, 伝達関数 測定器 取扱説明書 R1.1

d intensity indicator (Licensed mode) 1.0	-		×
ampling rate (8820 [Hz]) Window(Rectangular) Setting Degu	ig		
EU)			
ne – Ladina si andra di kali kali kana kana kali kali kana kana kana kana kana kana kana kan	dalariyada Yanganyaya		
EU]			
0 [s]	0	.310 [s]	
EU]			
		1	
EU] 401 [Hz] SI(OA) = -10.152 [EU]			
0 [Hz]		Label8	
[-]		_	
nt and a second s			
[-]			
		^	
		~	
	nd intensity indicator (Licensed mode) 1.0 Sampling rate (8820 [Hz]) Window (Rectangular) Setting Degu [EU] 0 (a) (EU) 0 (a) (EU) 0 (a) (EU) 0 (a) (EU) 0 (b) 10 (Hz] SI(OA) = -10.152 (EU) 0 (Hz] 10 (Hz] SI(OA) = -10.152 (EU)	nd intensity indicator (Licensed mode) 1.0 — Sampling rate (8820 [Hz]) Window(Rectangular) Setting Degug [EU] 0 (a) (Hz] (Hz] (Hz]) (Hz]) (Hz] (Hz]) (Hz)) (Hz]) (Hz]) (Hz)) (Hz]) (Hz)) (Hz)	and intensity indicator (Licensed mode) 1.0 — — Sampling rate (8820 [Hz]) Window(Rectangular) Setting Degug [EU] Intensity indicator (Licensed mode) 1.0 — — — [EU] Intensity indicator (Licensed mode) 1.0 — — — [EU] Intensity indicator (Licensed mode) 1.0 — — — [EU] 0 (s) 0 (s) 0 (s) (s) — — [EU] 0 (s) 0 (s) (s) — — — — [EU] 0 (s) (s) — — — — — — [EU] 401 (Hz) SI(OA) = -10.152 (EU) Label8 — — — — — [EU] 401 (Hz) SI(OA) = -10.152 (EU) Label8 — — — — — — — — … <td< td=""></td<>

目次

1. 概要	-
2. インストール方法	-
2.1 ソフトウェアのインストール	
2.2 機器の接続	
2.3 テスト音源の準備	
2.4 Windows 10 の設定	
2.5 マイクボリュームの調整	
3. ライセンスの取得	-
4. チュートリアル	-
4.1 テスト音の生成	
4.2 音源探查	
4.3 マイクボリュームの調整	
5. サンプリング周波数の決定	-
5.1 エイリアジング	
5.2 サンプリング周波数の決定法	
6. 周波数分析 ————————————————————————————————————	-
6.1 周波数分析機能	
6.2 トリガ機能(間欠音の測定)	
6.3 平均化	
6.4 デシベル 表示	
6.5 ウインドウ関数	
6.6 A 特性評価	
6.7 オーバーオール値	
6.8 ハムノイズに注意	
7. 音響インテンシティ測定 —————————————————————	
7.1 音響インテンシティ	
7.2 音響インテンシティの測定準備	
7.3 音響インテンシティの測定	
7.4 特定帯域の音響インテンシティ測定	
3. 音源探查	-
8.2 壁からの反射	
).	-
9.2 測定方法	
9.3 伝達関数の応用	
10. 測定テータを Excel に取り込む方法	-
参考文献	_

1. 概要

本装置は、音源位置を指し示す音源探査機であります。マイクが装着されたインジケータを用いることで、音 源の方向を調べることができます。また、同時に音響インテンシティを測定し、音波が進む方向をベクトル量とし て取得できます。添付のマクロプログラムつき Excel ファイルに、音響インテンシティとマイク座標を入力すること で、音源位置を求めることができます。

測定モードを変更することで 2-channel FFT アナライザとして機能し, 音の周波数分析を行います。AD 変換器 のライン入力に加速度計などの電圧信号を入力することで任意の信号の周波数分析をすることができます。ま た伝達関数測定も行います。伝達関数情報がわかれば, 実験モーダル解析(ソフトは別売)も可能になります。

Windows10 に対応しております。Windows11 でも音響インテンシティの測定はできますが、マイクボリュームの調整の確認が取れていません。

2. インストール方法

2.1 ソフトウェアのインストール

添付の圧縮ファイル(e_SI.zip)を解凍すると、フォルダ名「e_SI」のフォルダが生成されますので、フォルダごと Cドライブ直下にコピーしてください。インストール実行ファイルなどは必要としません。

2.2 機器の接続

出荷時に図 2-2-1の状態に接続されていますので, USB 端子を Windows PC に接続してください。

図 2-2-1 機器の接続

2.3 テスト音源の準備

いきなり本装置を使用すると何を測っているかわからなくなります。必ずチュートリアルに従って, テスト音源に 対する測定を行ってください。テスト音源発生器として, Windows PC とスピーカを準備してください。2.2 項で接 続した PC と同じもので OK です。ノートパソコンならスピーカが内蔵されているし, 携帯して測定ができるので適 しています。

2.4 Windows 10 の設定

ノートパソコンには、最初からモノラルマイクが付属しており、今回使用する 2-channel マイクと競合するので、 PC にどのマイクとスピーカを駆動させるかを教える必要があります。2.2 項に従った接続作業後に図 2-4-1 に示 すように、Windows 画面右下のスピーカアイコンを右クリックし、「サウンドの設定を開く(E)」を選択します。する と図 2-4-2 に示すようにサウンド設定ウインドウが開くので 2 つの作業をします。

ひとつ目はスピーカの選択です。製品の AD 変換器にはサウンド出力機能を持っているので, PC 内蔵のスピーカないしはヘッドホン出力と AD 変換器のサウンド出力が競合しています。PC 内蔵スピーカないしはスピーカ がつながっているヘッドホン端子に信号が出力されるように出力デバイスを選択してください。

ふたつ目はマイクの選択です。図 2-4-2 に示すように入力デバイスとして「マイク(USB Sound Device)」を選択 します。そして自身で発声し, マイクテストのインジケータが反応することを確かめてください。

2.5 マイクボリュームの調整

マイクボリュームを調整します。図 2-5-1 に示すように, Windows 画面右下のスピーカアイコンを右クリックし, 「サウンド(S)」を選択します。するとサウンドウインドウが開くので,「通信」タブを選択し, 図 2-5-2 左図に示すよ う「何もしない」を選択します。次に「録音」タブを選択し, マイクが「USB Sound Device 既定のデバイス」であり, かつ, チェックマーク 🥝 がついていることを確認します。そして [プロパティ] ボタンを押します。

マイクのプロパティウインドウが開くので,図 2-5-3 に示すように、「レベル」タブを選択しボリュームを 100 にして、「詳細」タブを選択し「2 チャンネル、16 ビット、44100 Hz (CD の音質)」を選択し、[適用] ボタンを押して、 [OK] ボタンを押します。

図 2-5-2 マイクの設定

音源探査機, 音響インテンシティ, FFT アナライザ, 伝達関数 測定器 取扱説明書

図 2-5-3 マイクボリュームの設定

3. ライセンスの取得

本ソフトウェアは指定された1台のPCにだけインストールができます。後でPCを変更する場合は別途ライセンス発行料がかかりますので慎重にPCを選んでください。Cドライブ直下「e_SI」フォルダ内の「sound_intensity_1.exe」ファイルをダブルクリックしてソフトを起動します。すると図 3-1 に示すようなウインドウが開くので、License code(3桁の数字)をメモしてください。[OK] ボタンを押すとソフトが起動するので、右上の「×」を押してソフトを終了させます。そして、「info@rt-designlab.com」宛に、License code、会社名、氏名が記載されたメールを送付してください。

Sound source detector and Sound intensity indicator	×
To purchase license file, send the license code to info@rt-designlab.com	OK
License code	キャンセル
708, info@rt-designlab.com	

図 3-1 ソフト起動メッセージ

確認後, ライセンスファイル「license_soundintencity.lic」を送付しますので, このファイルを C ドライブ直下 「e_SI」フォルダ内にコピー(上書き)してください。その後, 再度「sound_intensity_1.exe」ファイルをダブルクリック してソフトを起動します。するとソフトのタイトルが図 3-2 に示すように「Test mode」から「Licensed mode」変わり ます。これでソフトが動くようになりました。

🖳 Sour	nd source detector and So	ound intensity indicater(Tes	t mode) 1.0			-	×
File	Mode (Sound intensity)	Sampling rate (8820 [Hz])	Window(Rectangular)	Setting	Degug		
M	leasure	Label1					
Tri	gger ON	sient					
🖳 Sour	nd source detector and So	ound intensity indicator (Lic	ensed mode) 1.0			_	×
File	Mode (Sound intensity)	Sampling rate (8820 [Hz])	Window(Rectangular)	Setting	Degug		
M	leasure	Label1					
Tri	gger ON	sient					
Tri	gger ON	sient					

図 3-2 テストモードとライセンスモード

4. チュートリアル

4.1 テスト音の生成

必ずチュートリアルに従って, テスト音源に対する測定を行ってください。図 4-1-1 に示すように, 「e_SI」フォル ダ内の「sine_1000_Hz_L.wav」ファイルを右クリックし, 「プログラムから開く」/「別のプログラムを選択」をクリッ クします。

図 4-1-1 テスト音の生成

図 4-1-2 に示すウインドウが開くので、「Windows Media Player」を選択し、「☑常にこのアプリを使って .wav ファイルを開く」にチェックを入れて [OK] ボタンを押します。すると Media Player が起動しテスト音が生成されま す。図 4-1-3 のオレンジ色の楕円で囲ったあたりを右クリックして連続再生を選択します。上述した作業によって、 1000 [Hz] の正弦波の音が左スピーカから出力されます。

図 4-1-3 Media Player の連続再生の設定

4.2 音源探査

C ドライブ直下「e_SI」フォルダ内の「sound_intensity_1.exe」ファイルをダブルクリックしてソフトを起動します。 図 4-2-1 に示すように、メニューの「Mode(-----)」をクリックし「Sound intensity」を選択します。次に [Measure] ボタンを押すと測定を開始します。

💀 Sound source detector and	Sound int	ensity indicator(Lic	ensed mode) 1.0			_		Х
File Mode (Sound intensity) Samp	ling rate (8820 [Hz])	Window(Rectangular)	Setting	Degug			
FFT Sound intensity Trigger ON	ansient							
Trigger level [EU]	Label2							
Trigger channel	Laberz	0 [s]					Label13	
● ch1 ○ ch2								
Averaging on	Label3							
Averaging number Am 4	plitude							
💀 Sound source detector and	Sound int	ensity indicator(Lic	ensed mode) 1.0			_		×
File Mode (Sound intensity) Sampl	ling rate (8820 [Hz])	Window(Rectangular)	Setting	Degug			
Measure	Label1							
Trigger ON	ansient							
Trigger level [EU]	Label2							
Trigger level [EU] 1000 € Trigger channel	Label2	0 [s]					Label13	
Trigger level [EU] 1000 € Trigger channel ● ch1 ◯ ch2	Label2	0 [s]					Label13	

図 4-2-1 音源探査の開始

この後の操作法は、動画(https://www.youtube.com/watch?v=LXLH5_wSWHs)を参照してください。 図 4-2-2 に示すように、

インジケータの指し示す先の左側に音源があれば、マイナス値(赤色)を出力し、

インジケータの指し示す先の右側に音源があれば、プラス値(青色)を出力し、

インジケータの指し示す先に音源があれば、ゼロ値を出力ます。

このようにして、音源を探査します。

音源探査機,音響インテンシティ, FFT アナライザ,伝達関数 測定器 取扱説明書

4.3 マイクボリュームの調整

マイクをスピーカに極力近づけてガムテープなどで固定します。少々うるさいですがスピーカのボリュームを最 大とします。すると図 4-3-1 に示すように「Overrange! Turn down the volume!」と表示されます。

<u>図 4-3-1 AD 変換器の入力が限度を超えた場合</u>

図 2-5-1~図 2-5-3 の手順に従って「マイクのプロパティ」ウインドウを表示し、「レベル」タブを選択し、「Overrange! Turn down the volume」の表示が消えるまでマイクのボリュームを調整します。

測定対象が変わったときやマイクの位置が変わったときは、毎回、2.5 項のマイクボリュームの調整手順において、マイクボリュームを最大とし、「Overrange! Turn down the volume!」が表示されたとはボリュームを下げて ください。「Overrange! Turn down the volume!」が表示されないぎりぎりのボリュームの大きさで測定すると、ノイ ズの少ない測定となります。

5. サンプリング周波数の決定

FFT(周波数分析モード), 音源探査モード, Sound intensity(音響インテンシティ)測定モード, Transfer function(伝達関数)測定モードすべてにおいて, 適切なサンプリング周波数を決める必要があります。この方法を述べます。

5.1 エイリアジング

騒音対策の対象となる音の周波数はおおむね 100~4000 [Hz] です。4000 [Hz] の音だと1 秒間に 4000 回 音圧が変化するので、1 周期 0.00025 秒です。ということは、データサンプリング間隔は 0.00025 秒より十分短 くする必要があります。また、サンプリング周波数はデータサンプリング間隔の逆数なので、4000 [Hz] より十分 高くする必要があります。図 5-1-1 はサンプリング周波数が十分高い例で、このようなデータサンプリングをする と元の信号の周波数を特定できます。図 5-1-2 はサンプリング周波数が低い場合で、データは丸プロット「〇」の 位置で取得され、デジタルデータに変換(AD 変換)されます。AD 変換されたデータだけを読み取ると図の赤色 破線のような信号となり、元の信号と異なった周波数の信号が観測されることになります。

図 5-1-1 サンプリング周波数が十分高い場合

図 5-1-2 サンプリング周波数が低い場合

このような誤った測定をさけるために、サンプリング定理からサンプリング周波数は次式を満たす必要があり ます。

サンプリング周波数 >2×信号に含まれる最大の周波数

(5.1.1)

では、サンプリング周波数が低い場合を体験しましょう。ソフトを立ち上げて図 5-1-3 のように、メニューの 「Mode」/「FFT」をクリックし、FFT モード(高速離散フーリエ変換モード)に変更して、メニューの「Sampling rate」 /「8820 [Hz]」をクリックして、 [Measure] ボタンを押して測定を開始してください。

「C:¥e_SI」フォルダ内にある「sine_L_6000Hz.wav」をダブルクリックして,6000 [Hz] の正弦波音を発生させて, マイクをスピーカに近づけてください。次にソフトを起動し,図 5-1-4 のようにクリックして FFT モードで測定を開始 してください。

図 5-1-4 FFT モードでの測定

すると図 5-1-5 に示すように表示されます。上段のグラフは音圧の時刻歴波形,中段のグラフは周波数分析 結果の振幅,下段のグラフは周波数分析結果の位相角です。中段のグラフにて,2821 [Hz] の音として観測さ れます。エイリアジング(aliasing)という現象です。今回のサンプリング周波数は8820 [Hz] だったので観測でき る最大周波数は4410 [Hz] でした。観測される周波数は次式のようになります。

観測される周波数 = 4410 - (6000 - 4410) = 2820 [Hz] (5.1.2)

それでは,図 5-1-6 のようにサンプリング周波数を 14700 [Hz] に変更して測定してください。今度は図 5-1-7 に示すように,6001 [Hz] として正しく測定されました。

5.2 サンプリング周波数の決定法

モードを FFT とし, サンプリング周波数を 44100 [Hz] に変更して音を測定します。例えば図 5-2-1 のような 測定結果となります。中段のグラフの最高周波数のところにマウスポインタを移動してクリックします。するとその 点の周波数が表示されます。この例の場合 4014 [Hz] だったので, (5.1.1)式に従うと必要なサンプリング周 波数は 8028 [Hz] 以上となります。

図 5-2-1 サンプリング周波数を 44100 [Hz] とした周波数分析結果

図 5-2-2 に示すように、メニュー「Sampling rate」から 8028 [Hz] 以上のものを選択します。この場合は 8820 [Hz] となりのます。以上がサンプリング周波数の決定法です。

図 5-2-2 サンプリング周波数の設定

6. 周波数分析

本装置は音源探査機ですが、ユーザのほとんどは騒音対策を目的としているでしょう。騒音対策の基本は音の周波数分析です。周波数分析機能から説明します。

6.1 周波数分析機能

周波数分析機能は、マイクが測定した音圧を離散フーリエ変換して表示する機能です。高速離散フーリエ変換は Fast Discrete Fourier Transform ですが、一般的には Discrete が省かれて FFT(Fast Fourier Transform) と呼ばれています。

図 6-1-1 に示すように FFT モードとしてください。図 6-1-2 に周波数測定画面を示します。上段のグラフは信号の時刻歴波形,中段のグラフは周波数分析結果の振幅,下段のグラフは周波数分析結果の位相角です。信号値はマイクが出力する信号を 16 ビット AD 変換した値です。図 2-5-3 のボリューム値を変えると信号値が変わります。

<u>図 6-1-2 周波数測定画面</u>

図 6-1-1 の時刻歴波形において濃い緑色,濃い青色,薄い緑色,薄い青色の線があります。濃い色で表示されたデータが周波数分析されます。緑色はマイクの L チャンネルの信号,青色は R チャンネルの信号です。

6.2 トリガ機能(間欠音の測定)

間欠音の時刻歴波形を図 6-2-1 に示します。図の A の時間帯の音の周波数分析をしたいところですが,本装置はディフォルト設定では連続してデータを採取するため, B の時間帯の音を測定する場合もあります。A の時間帯の音だけを測定するためにトリガ機能を使います。

図 6-2-1 間欠音の時刻歴波形

「e_SI」フォルダ内の「press_machine.wav」を再生します。Windows Media Player で連続再生とすることを忘 れないでください。スピーカ音量を最大とし、ガムテープなどでスピーカの近くにマイクを固定します。そして、4.3 項「マイクボリュームの調整」に従ってボリュームを調整してください。図 6-2-2 に示すように、Sampling rate を 2005 [Hz] とし、 [Trigger ON] ボタンを押し、 [Measure] ボタンを押してください。

💀 Sound source detector and Sound intensity indicator (Licensed mode) 1.0 —												
File	Mode (FFT)	Sampling rate (2005 [z])	Window(Rectangular)	Setting	Degug						
	Measure	Label1										
Trige	Trigger ON ger level [EU]	Transient										
	1000 🌲	Label2										
		0 [:]					Label13				

図 6-2-2 トリガ ON の設定

すると図 6-2-3 のような波形が表示されます。測定を開始したい点は測定者が決めます。今回は図の赤丸で 示した点を測定開始点とします。その波形値を目盛から読み取ります。今回は 2000 [EU] 程度でしょうか。 Trigger level [EU] のボックスに 2000 を入力します。

図 6-2-4 のような画面になります。時刻歴波形において濃い色で表したデータが周波数分析の対象となります。意図したデータが周波数分析の対象となるように、Trigger level と Sampling rate を調整します。

図の B 部に注目します。どうやら今回の波形に含まれている周波数成分は 483 [Hz]が主成分で, それ以上の周波数成分はなさそうなので, エイリアジングはないと判断できます。

6.3 平均化

FFT はノイズに弱い分析法だといわれています。平均化することでノイズ成分を減らします。6.2 項の作業を続けます。図 6-3-1 に示すように [Start averaging] ボタンを押し, Averaging number を 10 とします。そして, [Measure] ボタンを押して測定を始めます。測定を10回行うので1分ほど待つと、図 6-3-2のように「Averaging finished.」と表示され測定を停止します。

<u>図 6-3-1 平均化の設定</u>

図 6-3-2 平均化終了画面

図 6-3-3 に平均化しない場合と n=10 で平均化した場合の周波数分析結果を示します。平均化によりグラフ の凹凸が滑らかになり、ノイズ成分が低減されていることがわかります。このグラフは Excel で書いたものですが、 測定データを Excel に読込む方法は後述します。

6.4 デシベル表示

周波数分析の結果を Log スケールでデシベル表示できます。図 6-4-1 に示すように、メニューの「Setting」/「Log scale」をクリックすると、図 6-4-2 右図に示すように中段の振幅の縦軸がデシベル単位になります。ただし、 このデシベル値は一般的な騒音計のデシベル値ではなく、16bit で AD 変換された値を次式で変換したものです。 図 2-5-3 のマイクのボリューム値を変えると、デシベル値も変化することに注意してください。

本装置 デシベル値 =
$$20 \log_{10}(16 \text{bit } \circ \text{AD }$$
変換された値) $[dB]$ (6.4.1)

騒音計 デシベル値 =
$$20 \log_{10} \left(\frac{6 E E \times 30^{-5} [Pa]}{2 \times 10^{-5} [Pa]} \right) [dB]$$
 (6.4.2)

図 6-4-1 振幅の Log スケール表示

音源探査機, 音響インテンシティ, FFT アナライザ, 伝達関数 測定器 取扱説明書

6.5 ウインドウ関数

ウインドウ関数の説明では、Amplitude(振幅)表示を Log スケールにした状態で説明します。Log スケール表示は、メニュー「Setting」/「Log scale」をクリックします。図 6-5-1 に 200 [Hz] の正弦波音を測定した画面を示します。Transient 波形の色の濃い部分が周波数分析の対象です。

図 6-5-1 200 [Hz] の正弦波音を測定した画面

Transient 波形の色の濃い部分が周波数分析の対象ということは、測定データは図 6-5-2 のように切り取られ ていることになります。

振幅表示を Log スケールにすると、図 6-5-3 の矢印で示すように周波数成分にはすそ野があります。つまり、 200 [Hz] 以外の周波数成分を含んでいることを示しています。しかし今回の音源は 200 [Hz] の正弦波音な ので、200 [Hz] 成分以外の周波数成分は持っていないはずです。このような周波数分析結果になった理由は、 図 6-5-2 に示したように測定データが切り取られ、データのはじめと終わりの部分が不連続になっていたためで す。

図 6-5-3 200 [Hz] 正弦波音の測定結果

この問題の対策のためにウインドウ関数と呼ばれるものを導入します。ウインドウ関数は時間の関数で「重み」 を表しています。図 6-5-4 に音圧信号, ウインドウ関数, 音圧信号とウインドウ関数の積, を示します。この例で のウインドウ関数は Hanning window と呼ばれているものです。図のようにウインドウ関数のはじめと終わりが ゼロなので, 音圧信号とウインドウ関数の積のはじめと終わりがゼロになります。音圧信号とウインドウ関数の 積を周波数分析すれば, 図 6-5-2 の右図に示した不連続性はなくなります。

図 6-5-4 音圧信号, ウインドウ関数, 音圧信号のウインドウ関数の積

ウインドウ関数をかけた場合の周波数分析結果を図 6-5-5 に示します。すそ野が 20 [dB] 以上低減されています。この例では倍音が観測されていますが, ウインドウ関数と倍音は関係ありません。

図 6-5-5 ウインドウ関数をかけた場合の周波数分析結果

本装置は図 6-5-6 に示す 4 種類のウインドウ関数を用意しています。ウインドウ関数なしは Rectangular window に相当します。それぞれのウインドウ関数は最大値が 1 ではなくいろいろな値を持っています。このような値にすることで、周波数分析結果の大きさが Rectangular window の場合と近くなるようにしています。通常は Hanning window で問題ないと思いますが、ウインドウ関数の違いに興味があれば参考文献 ¹)を参照ください。

図 6-5-6 ウインドウ関数の重み

6.6 A 特性評価

騒音計では A 特性, C 特性, Z 特性などそれぞれの周波数成分に重みをかけた測定ができます。図 6-6-1 に 各特性の重みを示します。A 特性は人の聴覚に合わせた重みで, A 特性の騒音値が, 人がうるさく感じる大きさ に近いということになります。例えば A 特性の 1000 [Hz] の重みは 0 [dB], つまり 1 倍です。1000 [Hz] の音に は重みをかけていません。一方, 100 [Hz] の重みは -20 [dB], つまり 1/10 倍です。人の聴覚は 100 [Hz] の 音に対するうるさく感じる度合いが 1/10 だということです。例をあげると, 1000 [Hz] 80 [dB] の音と 100 [Hz] 100 [dB] の音が, 人にとっては同じくらいのうるささです。ということは騒音対策を講じるときに, 少々100 [Hz] の音が入っていたとしても対策は必要なく, 1000~4000 [Hz] の音に対して対策が必要だということになります。 騒音対策を講じるときの指針として, A 特性の測定値を使うと都合がよくなります。

図 6-6-1 騒音計の周波数重みづけ特性

本装置には、周波数分析結果にA特性の重みを掛けるモードがあります。図 6-6-2 に示すように、メニューの 「Window」/「Aweight」をクリックします。

音源探査機, 音響インテンシティ, FFT アナライザ, 伝達関数 測定器 取扱説明書

<u>図 6-6-2 A 特性の設定</u>

繰返しとなりますが、本装置のデシベル表示の値(図 6-6-3)と騒音計が示すデシベルと値は、両者比例関係 にありますが、異なる値であることに注意してください。

6.7 オーバーオール値

図 6-7-1 で示した位置にオーバーオール値 OA が出力されます。オーバーオール値は次式で計算しております。

図 6-7-1 オーバーオール値の表示

信号を f(t) とすると、実効値は次式で定義されています。オーバーオール値は信号の実効値と一致します。

$$F_{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} f(t)^{2} dt}$$
(6.7.2)

信号が単一周波数の振幅 a の正弦波の場合、オーバーオール値(実効値)は以下の関係にあります。

$$OA = F_{RMS} = \frac{a}{\sqrt{2}} \tag{6.7.3}$$

6.8 ハムノイズに注意

図 6-8-1 にプレス音の周波数分析結果を示します。50 [Hz] 成分が観測されています。50 [Hz] 成分はい ろいろな場面で観測されていて、これが騒音の成分だと考えがちですが、多くの場合、電源周波数がノイズとし て混入していると考えた方がいいです。西日本では 60 [Hz] となります。この周波数成分については注意が必 要です。

音源探査機, 音響インテンシティ, FFT アナライザ, 伝達関数 測定器 取扱説明書

7. 音響インテンシティ測定

7.1 音響インテンシティ

音響インテンシティ I の定義を以下に記します。

$$I = \frac{1}{T} \int_{-T/2}^{+T/2} p(t) \ \boldsymbol{u}(t) \ dt \ [W/m^2]$$
(7.1.1)

T: 測定時間 [*s*], *p*(*t*): 音圧 [*Pa*], *u*(*t*): 粒子速度 [*m*/*s*]

粒子速度 u(t) は音の速度ではなく、空気の小さな塊(流体粒子)の速度です。u(t) は方向を持ったベクト ル量なので、音響インテンシティ I もベクトル量となります。例えば図 7-1-1 に示すように点音源から音が放射 されているとします。音は点音源から遠ざかるように進行します。よって、点音源の音響インテンシティの方向は 点音源から遠ざかる方向です。音響インテンシティの大きさは観測する位置によって異なります。点音源の出力 を W [W] としましょう。半径 r の球の表面積は $4\pi r^2$ なので、音響インテンシティの大きさは次式となります。 音響インテンシティは単位面積の面を通過する音のエネルギとなります。

$$|I| = \frac{W}{4\pi r^2} \tag{7.1.2}$$

音響インテンシティはベクトル量なので3成分あります。そして本装置には2つのマイクがあり,図7-1-2に示したマイク配置で測定することで,音響インテンシティの3成分 *I_x, I_y, I_z*が測定されます。本装置が表示する音響インテンシティは(7.1.1)式ではなく,次式で求まる音響インテンシティです。音響インテンシティの単位は [*W*/*m*²] ですが,本装置は PC のマイクロホンのボリュームを調整しているので,本装置は音響インテンシティ に比例する量を表示します。

$$I_x, I_y, I_z = -\frac{1}{2\pi\rho\Delta r} \int_{-\infty}^{+\infty} \frac{Im\{S_{12}(\omega)\}}{\omega} d\omega = -\frac{1}{2\pi\rho\Delta r} \int_0^{+\infty} \frac{Im\{G_{12}(\omega)\}}{\omega} d\omega$$
(7.1.3)

 I_x, I_v, I_z : 音響インテンシティのベクトル成分

ρ: 空気の密度, Δr: マイク間隔, ω: 角振動数

 $Im\{S_{12}(\omega)\}:S_{12}(\omega)の虚数部$

 $S_{12}(\omega)$:2つのマイクの音圧 $(p_1(t), p_2(t))$ のクロススペクトル

 $G_{12}(\omega)$:2 つのマイクの音圧の片側クロススペクトル, 今回の場合 $G_{12}(\omega) = 2S_{12}(\omega)$

図 7-1-2 音響インテンシティ測定時のマイク配置

7.2 音響インテンシティの測定準備

音が右から左に伝わっているときと、左から右に伝わっているときとでは、音響インテンシティの符号は反対な ので、2 つのマイクの位置関係を把握する必要があります。添付した wav データ(sine_1000_Hz_L.wav)をノート パソコンなどで再生します。次に C ドライブ直下「e_SI」フォルダ内の「sound_intensity_1.exe」ファイルをダブルク リックしてソフトを起動します。図 7-2-1 に示すように、メニューの「Mode(-----)」をクリックし「Sound intensity」を 選択します。次に [Measure] ボタンを押すと測定を開始します。

💀 Sound source detector and So	und intensity indicator(Lic	ensed mode) 1.0			_		×
File Mode (Sound intensity)	Sampling rate (8820 [Hz])	Window(Rectangular)	Setting	Degug			
FFT Sound intensity Trigger ON	11						
Trigger level [EU]	abel2						
Trigger channel ch1 ch2	0 [s]					Label13	
Averaging on	abel3						
Averaging number Amplit	tude						
🛃 Sound source detector and So	und intensity indicator(Lic	ensed mode) 1.0			-		×
File Mode (Sound intensity)	Sampling rate (8820 [Hz])	Window(Rectangular)	Setting	Degug			
Measure	abel1						
Trigger ON	ient						
Trigger level [EU]	.abel2						
Trigger channel	0 [s]					Label13	
● ch1 () ch2	abal9						

図 7-2-1 音響インテンシティ測定の開始

図 7-2-2 に示すように 2 通りの測定をします。すると図 7-2-3 に示すように 2 通りの測定結果が得られます。

音源探査機,音響インテンシティ, FFT アナライザ,伝達関数 測定器 取扱説明書

🖶 Sound source det	ector and Sound intensi	ity indicator(Licensed mode) 1.0	- 0	x נ	💀 Sound source dete	ctor and Sound inten	isity indicator(Licensed mode) 1.0	-	
File Mode (FFT)	Sampling rate (8820 [F	Hz]) Window(Rectangular) Setting	Degug		File Mode (Sound	intensity) Samplin	g rate (8820 [Hz]) Window(Rectangular) Se	ting Degug	
Measure	1000(EU)	The outflow and publication (the particular states of the particular st		Ph.	Measure	2000(EU)	anna an taon di Chon taon	Wes.	adMins
Trigger ON	Transient	արտակորդությունը, որ ու որ դերերդը։ Դուն ու ու որ ու	րոյի Դեպեսին անգանությունը Դեպեսին անգանությունը	dh.u	Trigger ON	Transient	and a state of the	^{na} la _{la constanta da la constant Nacional da la constanta d}	ania -
Trigger level [EU]	-2000[FLI]	and the stand of t			Trigger level [EU]	-2000[E11]	and Brane	ATT MULTING AND	
Trigger channel	0 [s		0.290	[8]	Trigger channel	01	[2]	0.26	30 [s]
Averaging on	20.00 (EU)	999 [H2] SKOA) = 19.56	4 (EU)		Averaging on	30.00 (EU)	\frown		
Averaging number	Amplitude	\cup			Averaging number	Amplitude	()		
Fileout	-20.00 (EU) 0 (H	tz]	4406	[Hz]	Fileout	-30.00 (EU) 0	999 [Hz] SI(OA) = -22.856 [E	U] 440	06 (Hz]
	200 [deg]				SI -22.856 [1.8 [-] [EU]	<u> </u>		
	Phase					SI transient			
	-200 [deg]					-1.3 [-]			
	0 D	Hz]	Lab	el15					
				< ~					< >

音響インテンシティがプラス値

音響インテンシティがマイナス値

図 7-2-3 音響インテンシティ測定結果

2 つの測定の違いは音響インテンシティの符号です。音響インテンシティがプラス値になるマイクの方向を覚 えておき,図 7-2-4 に示すようにマジックで矢印を書いておいてください。

マジックで矢印を書く

図 7-2-4 音響インテンシティがプラスになる方向を記入

出荷時に書いておいてもいいのですが,ユーザの方にマイクの方向を意識していただくためにこのような記述 としました。

7.3 音響インテンシティの測定

最初に、5項で述べた手順でサンプリング周波数を決定し、6.2項で述べたトリガを設定し(必要な場合のみ)、 6.3 項で述べた平均数を設定し(必要な場合のみ)、6.5 項で述べたようにウインドウ関数を選択し(必要な場合 のみ)、6.6 項で述べたA 特性の有無を選択して(必要な場合のみ)してください。

ここで述べる音響インテンシティ測定は、いきなり測定対象で実施すると多分失敗します。スピーカを用意する かノートパソコンの内蔵スピーカから、添付した wav データ(sine_1000_Hz_L.wav)を再生して、スピーカから 300 [mm] 程度離れた測定点を数か所設定して、測定の練習をしてください。

音響インテンシティはベクトル量なので、X 方向成分 I_x , Y 方向成分 I_y , Z 方向成分 I_z の 3 成分があり、1 か所の音響インテンシティの測定には 3 回の測定が必要です。図 7-1-2 にベクトルで表した音響インテンシティ とマイクの位置を示しました。

図 7-3-1 に測定対象と測定点を示します。測定点は 3 次元空間のある面上に配置された点群となります。各 測定点に番号をつけ座標(x_i, y_i, z_i)を決めます。測定点の位置を定義にするために、空間内に糸などを張って 測定点位置を明示する必要があります。この作業は少し手間がかかりますが、3 次元空間内の位置を特定する ためには必要な作業となります。

図 7-3-1 測定対象と測定点

図 7-3-2 に示すように, 1 測定点あたり 3 回の測定をします。そして図 7-3-3 に示したソフトが表示する SI 値 (サウンドインテンシティ値)を記録します。この SI 値は全周波数帯域に対するものです。オーバーオール値のようなものです。

図 7-3-2 音響インテンシティの測定

図 7-3-3 SI 値の表示

次に添付したマクロ付き Excel ファイル(Soun_intensity_map.xlsm)を開き, 図 7-3-4 に示すように測定点の座 標値と X, Y, Z 方向の SI 値に入力します。この Excel シートの着色したセルを書き換えないでください。すべての 測定が終わったら, 回転ボタンを押してみてください。ベクトル表示された SI 値が回転し, その方向を認識できる と思います。最後に [Sound source] ボタンを押すと音源座標が表示されます。このとき 4 回, 図 7-3-5 の画面 が表示されますが, すべて [OK] ボタンを押してください。

図 7-3-4 SI 値の記録と音源位置の同定

ソルバーの結果	>	(
ソルバーによって現在の解に収束されました。すべての制脉 条件を満たしています。	ら レポート								
 ● ソルパーの解の保持 ○ 計算前の値に戻す 	解答 感度 条件								
□ ソルバー パラメーターのダイアログに戻る	ロアウトライン レポート								
K キャンセル	シナリオの保存								
ソルバーによって現在の解に収束されました。すべての制約条件を満たしています。									
ソルバーで反復計算を5回実行しましたが、目的セルが有意 開始点を変更してください。	に移動しませんでした。収束の設定値を小さくするか、								

図 7-3-5 Excel のソルパーダイアログ

7.4 特定帯域の音響インテンシティ測定

問題とする騒音の周波数に問題としない環境の音が混ざっているときは、問題とする騒音の周波数を調べて おき、その周波数帯域だけの音響インテンシティを測定することができます。まず、白紙の Excel シートを開いて おいてください。図 7-4-1 に音響インテンシティ測定データを示します。 [Stop] ボタンを押して測定を停止し、 [Fileout] ボタンを押してください。そして Excel に移動し、A1 セルを選択してキーボードの [Ctrl] キーを押しな がら [V] キーを押してください。

図 7-4-1 音響インテンシティ測定データ

すると図 7-4-2 に示すように、中段のデータ(SI 値)が Excel シートに貼り付けられます。図の D 列の周波数と E 列の SI 値に注目します。例えば 340~392 [Hz] の帯域の音響インテンシティだけを測定したい場合は、図 のように数式を代入します。総和値(=SUM(E81:E93))が特定周波数の音響インテンシティ値となります。この値 を前項の SI 値として入力します。

音源探査機, 音響インテンシティ, FFT アナライザ, 伝達関数 測定器 取扱説明書

INDEX ▼ Image: SUM(E81:E93)											
	А	В	С	D	E	F	G	Н	L I .		
1	Re-sampling rate [Hz]	8820	i	Frequency [Hz]	sound intensity [EU]	theta [deg]	costh				
2	Re-sampling delta-T [s]	0.000113379	1	0	0	0	0				
3	Window	Rectangular	2	4.306640625	0	0	0				
4	SI overall	0.000504611	3	国油粉	cl/值	0	0				
5	Frequency of max SI	361.7578125	4		问版权	51但	0	0			
6	Max SI	0	5	1/.2205025		0	0				
7	cos(theta)	1.393909223	6	21.53320313	0	0	0				
80			79	335.9179688	1.30E-05	999	1.287817567		-		
81			80	340.2246094	4.53E-05	999	1.809609652	=SUM(E81:E93)			
82			81	344.53125	7.00E-06	999	1.78224248		-		
83			82	348.8378906	1.51E-05	999	1.624930087	数式を代	<u>ג</u>		
84			83	353.1445313	5.43E-06	999	1.605713851				
85			84	357.4511719	3.08E-06	74.70540245	0.2637821				
86			85	361.7578125	4.07E-05	999	1.393909223				
87			86	366.0644531	1.75E-06	999	1.895856949				
88			87	370.3710938	2.91E-06	38.99834989	0.777164086				
89			88	374.6777344	2.50E-05	999	2.143555896				
90			89	378.984375	5.14E-06	38.42663238	0.783404649				
91			90	383.2910156	5.25E-06	999	1.134523708				
92			91	387.5976563	6.35E-06	999	1.231818886				
93			92	391.9042969	2.80E-06	999	3.485377952				
94			93	396.2109375	1.83E-06	999	3.144398901				
95			94	400.5175781	1.10E-05	999	1.28782762				
96			95	404.8242188	8.10E-06	999	3.134934652				
97			96	409.1308594	1.16E-05	999	4.593884052				

図 7-4-2 測定データの Excel への貼付けと特定帯域の音響インテンシティ値の計算方法

測定データの Excel への貼付けについては後述します。

8. 音源探查

8.1 音源探查方法

音源探査方法はチュートリアルの 4.2 項で述べたとおりですが, 最初に 5 項で述べた手順でサンプリング周波 数を決定し, 6.2 項で述べたトリガを設定し(必要な場合のみ), 6.3 項で述べた平均数を設定し(必要な場合の み), 6.5 項で述べたようにウインドウ関数を選択し(必要な場合のみ), 6.6 項で述べた A 特性の有無を選択して (必要な場合のみ)してください。

8.2 壁からの反射

壁からの反射が無視できない場合がよくあります。図 8-2-1 に音源の音響インテンシティと壁から反射した音の音響インテンシティを示します。音響インテンシティはベクトル量なので、観測される音響インテンシティはベクトル和となり、本測定器は間違った方向の音源を指し示すことになります。

対策としては、なるべく音源に近づけて測定すること、壁に吸音材を張り付けること、無響室で測定することが 考えられます。

9. 伝達関数測定

9.1 伝達関数

マイクに注目すると図 9-1-1 に示したように $R_{ch}(ch1)$ と $L_{ch}(ch2)$ があります。本装置が表示する伝達関数 (*Amplitude*, *Phase*) は下記値となります。

$$H(j\omega) = Re(H(j\omega)) + j Im(H(j\omega)) = \frac{Re(L_{ch}(j\omega)) + j Im(L_{ch}(j\omega))}{Re(R_{ch}(j\omega)) + j Im(R_{ch}(j\omega))}$$
(9.1.1)

$$Amplitude = |H(j\omega)| = \sqrt{Re(H(j\omega))^{2} + Im(H(j\omega))^{2}}$$
(9.1.2)

$$Phase = \angle (H(j\omega)) = \tan^{-1} \frac{Im(H(j\omega))}{Re(H(j\omega))}$$
(9.1.3)

ω = 2πf [rad/s], f: 周波数 [Hz]

H(jω): 周波数伝達関数 [-], Re(): 実数部, Im(): 虚数部

 $L_{ch}(j\omega): L_{ch}$ に入力された信号の離散フーリエ変換 [EU]

R_{ch}(jω): R_{ch}に入力された信号の離散フーリエ変換 [EU]

後述するテキストファイル出力機能は、Amplitude、Phase、 $Re(H(j\omega)), Im(H(j\omega))$ を出力します。

9.2 測定方法

最初に、5項で述べた手順でサンプリング周波数を決定し、6.2項で述べたトリガを設定し(必要な場合のみ)、 6.3 項で述べた平均数を設定し(必要な場合のみ)、6.5 項で述べたようにウインドウ関数を選択し(必要な場合 のみ)、6.6 項で述べた A 特性の有無を選択して(必要な場合のみ)してください。図 9-2-1 に示すように、メニュ ーの「Mode」/「Transfer function」を選択し、 [Measure] ボタンを押して測定を開始してください。

音源探査機,音響インテンシティ, FFT アナライザ,伝達関数 測定器 取扱説明書

9.3 伝達関数の応用

本装置に付属するマイク以外のものを使用するとサポートの対象がとなりますが,以下のような応用がありま す。まず振動の実験モーダル解析です。

AD 変換器には LINE 入力端子があるので, 図 9-3-1 に示すように加速度計の出力を LINE 入力端子につな ぎます。単純な振動加速度の周波数分析もできますが, 伝達関数を測定すると図 9-3-2, 図 9-3-3 に示すような 実験モーダル解析ができ, 振動対策の指針を得ることができます。別売ですが実験モーダル解析ソフトもご用意 しています。

<u>図 9-3-1 加速度測定</u>

振動形状 モード1

図 9-3-3 実験モーダル解析結果

次は音響モーダル解析です。例えば車内などの密閉空間では音圧分布もモードを持っています。位相特性の そろったマイクを2つ用意し図 9-3-4 に示すように接続し,図 9-3-5 に示すように MIC2 の位置を固定し,空間内 のいくつかの点に MIC1 を位置させ,伝達関数を測定します。その後信号処理をすることで,図 9-3-6 に示すよ うに,卓越した周波数成分を持つ音の振幅と位相情報を得ることができます。この技術を利用することで密閉空 間内のノイズキャンセリングのための知見が得られます。別売ですが音響モーダル解析ソフトもご用意していま す。

MIC2の位置を固定し, MIC1の位置を色々変えて伝達関数を測定する。

<u>図 9-3-5 音響モーダル解析のための騒音測定</u>

図 9-3-6 音響モーダル解析結果

10. 測定データを Excel に取り込む方法

最初に Excel を立ち上げ, 白紙の Excel シートを用意してください。測定を開始し図 10-1 に示すように [Stop] ボタンを押して測定を停止します。そして, [Fileout] ボタンを押します。この時点で図の「振幅データ」と「位相デ ータ」がテキストデータとして Windows のクリップボードにコピーされます。Excel に戻り A1 セルを選択して, [Ctrl] キーを押しながら [V] キーを押して, クリップボードのデータを Excel に貼り付けます。図 10-2 に Excel に貼り付けられたテキストデータを示します。

	A	В	С	D	E	F	G	н	I.	J	К	L N	VI N
1	Re-sampling rate [Hz]	8820	i –	Freqency [Hz]	Re ch1	lm ch1	ch1 [EU]	Ang(ch1) [deg]	Re ch2	lm ch2	ch2 [EU]	Ang(ch2) [deg]	
2	Re-sampling delta-T [s]	0.000113379	1	L C		\ 0		1 \ (0 🔪 1			\ 0	
3	Window	Rectangular	2	4.306640625				1 1 0	0 1			. 0	
4	Overall ch1	89.2952315	3	8.61328125		N N		1 1 0	0 7				
5	Overall ch2	69.9410686	4	12.91992188	1	d		1 \ (0 1	i 🔪 – o			
6	A weight ch1	Off	5	17.2265625	1	0			0 1				
7	A weight ch2	Off	6	6 21.58320313	5.095586541	3.925912513	12.6511420	6 -37.612579	6.392524469	-0.980017905	12.9344198	-8.7 5975438	
8			7	25.88984375	10.65374472	558954072	21.53440173	8.32496310	12.16577347	2.972449652	25.0472753	13.73001944	
9			8	3 周波数 ch	1 (R-ch) の離散つ	マーリエ変換の調	≢数部 虚数音	B 絶対値 ³ 位相			13.7240759	39.33326 88	
10			9	34.453125					4.9861ch2 (L	-ch) の離散フー	リエ変換の実	女部 虑数部 絶対値	位相
11			10) Las.75976562	-11.71753403	-6.916384778	27.21301028	-149.44837:	1 -13.0778874/	-2.789897729	26.7443204	-167.9576411	

<u>図 10-2 テキストデータ</u>

時刻歴データが必要なときは、図 10-3 に示すように、メニューの「File」/「Fileout resampled wave data」をク リックします。そして Excel シートに貼り付けてください。AD 変換器は常に 44100 [Hz] でデータを収集していま すが、このデータは指定したサンプリングレートに変換した時刻歴データとなります。

図 10-3 時刻歴データのテキスト出力。

メニューの「File」/「Fileout wave data」をクリックすると、リサンプリングしない 44100 [Hz] で収集したデー タを出力します。Excel に貼り付けたときにデータ量が膨大となるので注意してください。

参考文献

- 1) 城戸健一, ディジタルフーリエ解析(I) —基礎編—, 日本音響学会, (2014)
- 2) 城戸健一, ディジタルフーリエ解析(II) ―上級編―, 日本音響学会, (2014)
- 3) 小橋豊, 基礎物理学選書 4 音と音波, 裳華房, (S62)

以上